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Abstract 
We propose the use of universal literals as a means of 

reducing the cost of multiple-valued circuits. A universal 
literal is any function on one variable. The target 
architecture is a sum-of-products structure, where sum is 
the truncated sum and product terms consist of the 
minimum of universal literals. A significant cost 
reduction is demonstrated over the conventional window 
literal. The proposed synthesis method starts with a sum- 
of products expression. Simplification occurs as pairs of 
product terms are merged and reshaped. We show under 
what conditions such operations can be applied. 

1 Introduction 

The goal of this paper is to develop the theoretical 
framework needed to provide more efficient 
implementations of multiple valued logic circuits. 
Towards this end, we propose the use of more complex 
literal functions than have been used in the past. Previous 
literal functions include the so-called window literal. We 
replace this with the universal literal. which is any logic 
function on a single variable. We propose a synthesis 
method that combines and divides product terms. While 
this makes synthesis more complicated, it results in more 
efficient realizations. There are two contributions of this 
paper 1. establishing a theoretical basis for the new 
operations and 2. demonstrating their efficiency. 

Many multiple-valued logic minimization algorithms 
use the direct cover method pOM81, BES86, DUE871. In 
direct cover minimization, a minterm is selected according 
to some criteria. From all the implicants that cover the 
selected minterm, the best one is chosen to be part of the 
solution. This process is iterated until all minterms are 
covered. Several direct cover algorithms have been 
implemented in the PLA minimization tool HAMLET 
[YUR90]. These algorithms use window literals. 
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However, in current-mode CMOS, window literals do not 
provide as efficient implementation as universal literals 
[DUE92b]. Also, the cost-table was shown to produce 
more cost effective implementations. Most minimization 
procedures using cost-tables in the past have been limited 
to one or two input variables kEI91, LEE83, ABD881. 
This restriction makes these minimization procedures inept 
for most practical functions. Dueck [DUE92b] proposed 
an algorithm which combines cost-tables with direct cover 
minimization that produces good results for functions with 
up to four variables. Unfortunately, functions with more 
than four variables require excessive CPU time. 

There are two serious limitations inherent in the direct 
cover method. One is that it operates on minterms. This 
implies that the function, even when it is given in a near 
minimal form, has to be expanded into minterms. 
Memory requirements become very large when the number 
of input variables increases. Also, the number of 
implicants that have to be considered to cover a given 
minterm may be very large. This occurs when a function 
can be covered by a few large product terms. 

Recently, Dueck et al. lDUE92aI proposed an algorithm 
that manipulates product terms directly without breaking 
them into minterms. The algorithm makes use of the op- 
erations: merge, sharp, and reshape. These operations are 
applied in a nondeterministic fashion, guided by the 
simulated annealing principle. Results from this 
algorithm, which has been incorporated into HAMLET, are 
encouraging. 

We want to be able to manipulate product terms in a 
sum-of-product expression consisting of universal literals. 
In this paper, we redefine the primitive operations that 
have been successfully used with window literals and apply 
them to universal literals. This provides a basis for 
algorithms operating on universal literals. 

2 Definitions and Notation 

Let xi be a variable that can assume any logic value in 
the set R = (0,1;..,r - l), where r denotes the radix. Let 
X = ( x ~ , x 2 , ~ . . , x , )  be a set of n variables. An r-valued 
function is a mapping f :  Rn + R. The universal literal 
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e UOU~...U,-~ is a one-variable function f(xi), such 
that f(j) = U,. For example, the identity function 
f(x1) =e 0123 >%, has the property that x1 = 0 yields 
f = O ,  x l = l  yields f = 1 ,  x 1 = 2  yields f = 2 ,  and 
xl = 3 yields f = 3. 

Aproduct term of literals P(x1,x2,...,xn)= qoa11 
...fll,-l >,, e a20a21-*-a2,-1 >*, .*.e Q,OUn1 .'.Un,-1 >I. 
has the property, that for each assignment a of values to 
the variables xl,x2,.--,xn, P is the minimum of the 
values achieved by the literals for a. For example, 
eO123>,, <0123>,, is the minimum function; i.e. 

A product term representation is not unique. For 
example, for Pl(xl,x2) = < 3210 >,, e 1220 >,, and 
P2(x1,x2) =e 2210 >%, < 1230 >,,, we can write 
PI = P2. This product term is shown in Figure 1. There, 
blank squares correspond to assignments where the 
function is 0. Two product terms are said to be equivalent 
if they realize the same function. Thus, <3210>,, 
e 1220 >%, and e 2210 >x, e 1230 >,, are equivalent. 

P(xl,x2)=MIN(xl,q). 

3 t t m  
Figure 1. A two-variable 4-valued function. 

Let aimax = MAX(aio,ail,...,a~-1), where 1, I i I n. 
A product term is said to be normalized if all aya are 
equal. For example, for Pl (xl , x 2 )  =e 3210 e 1220 >xz  

and P2(x,,x2)=<2210>xle1230>x2, we have 
a;lrx,ay = 3,2 and 2.3, respectively. Neither is 
normalized. However, P3(xl,x2) =e 2210 >+ e 1220 >", 
which is equivalent to P1(xlrx2) and P2(x1,x2), is 
normalized with a? = a y  = 2. 

A product 
term P can be converted into a normalized one equivalent 
to P by replacing all aii >ammPx with amma'. Note 
that the normalized product term is unique. For the 
remainder of this paper, we will only consider normalized 
product terms on universal literals. 

Let a minterm be a function f(x1,x2,...,x,) that is 
nonzero for exactly one assignment of values to the 
variables. A minterm can be represented by a product 
term, where each literal consists of all 0 components 
except one. 

The size of a product term is the number of assign- 
ments of values to variables for which the product term is 
nonzero. For example, the size of the product term 
e 2210 e 1220 >xz is 9. 

Let a h m =  - - M I N ( a ; l r x , a ~ , . . . , a ~ )  . 

Function fl  covers f2, if fl@)2f2@), for all 
assignments of values p ,  where 2 is the greater-than-or- 
equal-to operator with logic values viewed as integers. For 
example, the function e 1220 e 0221 > x z  covers 
e 0120 >', e 0210 > x , .  

The huncated sum operation, denoted +, is 
fl @I + f2V) = M N r  - l , f l@)+ f2@)1. 

where + on the right is arithmetic addition with logic 
values are viewed as integers. 

We say that two universal literals e aioail...ai,-l >xi 

and e biobil * bir-l >xi intersect iff 
r-1 

j -0 
Caijbij f 0. 

For example, literals e 1030 and e 1010 intersect, 
while e 0223 and e lo00 do not. The distance 
between two product terms is the number of variables for 
which the corresponding literals do not intersect. For 
example, the distance between product terms 
P4(x1,x2)=e1030>x1 <0223>,, and Ps(xl,x2)= 
e 1010 e lo00 >x, is 1, since there is one variable, 
x 2 ,  where the literals do not intersect. 

3 Product Term Operations 

In this section, we describe operations that can be 
performed on product terms. These operations have been 
defined elsewhere for window literals [DUE92]. Here, they 
are extended to universal literals. Most operations are 
intuitively easy to understand, but the conditions under 
which they apply and their implementation in computer 
programs are not trivial. 

3.1 The Merge Operation 

A fundamental operation in our proposed method is the 
merging of two product terms on universal literals. 
Specifically, we ask under which conditions the truncated 
sum of two product terms, A and B, can be expressed as a 
single product C. The first result below specifies the form 
of c. 
Lemma 1: If the truncated sum of two product terms, A 
and B, is expressible as a single product term 

e c,oc,l~-c,-l then 

where aii and bij are components in the literals of A and 
B,respectively,for l l i l n  and OS j I r - 1 .  
Proof: Consider a cB, and choose an assignment 
a = (a1,a2,...,a,) of values to variables, such that 
a, = j and a,, = j', where i'iti and ci7. = chmx. 
Because the product .term is normalized, we can always 
choose ci7, as cmmax . It follows that C(a)= 
MIN(C~~,,C~,~,...,C,~) = cii. On the contrary, if 

A + E = C = < C ~ O C ~ ~ . . . C ~ ~ - ~  <~20~21***~2~-1 >x2 ... 

(1) c.. 1J < - a.. 1J + b.. IJ 9 

74 



cy > ay + bV , then from A ( a )  I a,, and E(a) I bh, , 
C(a) = cV > ay + by 2 A ( a )  + E(a), which contradicts 
C = A + E .  Q.E.D. 
Example 1. Let A=<1030>,<0223>x2 and 
E =< 1010 < lo00 >+. See Figure 2. C = A + E is 
expressible as a single product term C=<1030>,, 
< 1223 >%, , which has the property C k a ,  = aka, + bh, , 
except for k = 1 and a, = 0, where clo < qo + blo . 

C - A + B - 
Figure 2. Merging of two product terms. 

Example 1 shows that the inequality of (1) cannot be 
replaced by equality. For many examples, equality holds 
in (1). For such cases, we can show necessary and 
sufficient conditions for the merging of two product terms. 
Lemma 2: Let A and B be two product terms. A + B is 
expressible as a single product term C, where 

(2) 
for all 1 S j I n and 0 I ai I r - 1 iff for all assignments 
a = (a,,a,,...,a,,) of values to variables x , , ~ , , . . . ,  and 
x, either 

a) There exists an i such that both A(a)  = ai, and 

or b) A( a) + E(a) = r - 1. 
Proof: (if) Assume a) holds. Then, C ( a )  = A ( a ) +  
E(a) = aiai + biai I uiaj + biaj for all 1 I J I n . The 
latter inequality is the condiuon for expressibility by a 
single product term. Assume b) holds. We claim there is 
noj such that ajaj + b ja ,  e r-1. On the contrary, if so, 
then A ( a ) + E ( a ) < r - f .  But aja.  + b j a j  2 r - 1  for all 
1 I j I n implies C(a) = r - 1 and is the condition for 
expressibility by a single product term. 
(only if) Assume that neither a) nor b) hold for some 
assignment a'=(a;,a;;..,a:). We show that A + E  is 
not expressible as a single product term such that (2) 
holds. Since A and B are product terms, 
A(a') = spa, I ajal and B(a ' )  = bsa: I b j a j ,  for all 
1 I j I n .  because a) does not hold, spa; < usa; or 
bsa: b W ; .  Because b) does not hold, a,; + bsa: < 
r - 1. Thus, for all 1 I i I n , aiai + biai > ups; + bsa; . 
Further, r - 1 > C(a') = + bsa; < aiai + biar I cia:, 
which contradicts the condioon that C is a single product 
term satisfying (2). Q.E.D. 

C j a j  = ajaj + bjaj 9 

E(a) = biai 

Example 2. From Example 1, if A=<1030>,, 
< 0223 >x2 and E = < 1010 >%, loo0 >%, , then 
C = A + B  is expressible as a single product term 

except for one case, 1 = c,, < clo + clo = 1+ 1. Since this 
does satisfy (2) in Lemma 2, then it must not satisfy a) or 
b) of Lemma 2. This can be seen as follows. Consider 
a = (0,2). Since A ( a ) +  E(a) = 1, b) is not satisfies. 
But neither is a), as follows. For i = 1, A ( a )  f a,,, and 
for i = 2 ,  E(a)*a,.  
Definition 1: Two product terms, A and E,  can be 
merged iff there is a product term, C, such that C = A + E ,  
where + is the truncated sum. 

For example, the product terms A and E in Example 2 
can be merged into C. Note that Lemmas 1 and 2 give 
conditions under which two product terms can be merged. 
A third condition follows. 
Lemma 3: If product terms A and B can be merged, then 
the distance between them is no greater than 1. 
Prmk On the contrary, assume A and B are distance two 
or more apart. Thus, at least two of the universal literals 
in A do not intersect with their corresponding literals in E. 
Let i andj denote the indices of these literals. That is, for 
A=*..<aioai,*.*~i,-l > x i  . * e <  Qjoajl***Qjr-l >xj and 
E = . . . <  biobil...bi ,-, b job j l .~ .b j r - l  we 
have a,b,=O and a. b .  = O  for O I k I r - 1 .  Let 
a = a,a,...a,, and /3 td:p, .p, ,  be nonzero minterms 
in A and B, respectively. It follows that ala, > O ,  
a,,, > 0, am, > 0 and blp, > 0, bZp, > 0, bnsm > 0 .  
Assume A and E can be merged into one product term C. 

cjr-, >,.--., we have C =  A + B ,  and it follows that 
Cia, >O', C2a2 >O, c2p2 >O, 
... c > 0. Consider the assignment y = ala2--. 
ai-lpai+l.--a,,. It follows that C(y)  > 0, since 

... , cmm > 0. By the nonoverlap of A and E, we have 
uiaibiai = 0 and u j p . b j p j  = 0. Since aiai > 0 and 
bja.  > 0, it follows thh biai = 0 and ujPj = 0. But, the 
fodner implies that E ( y )  = 0,  while the latter implies 
A(y)=O. Thus, C(y)=A(y)+ E ( y ) = O ,  a contra- 
diction. Q.E.D. 

We now establish the conditions under which two 
product terms at distance 1 or less may be merged. We 
consider three different cases. 
Case 1: Two product terms at distance 1 can be merged 
if the conditions in Lemma 4 are satisfied. 
Lemma 4: Let A and B be two product terms at distance 
1, and let xi be the variable for which the corresponding 
literals do not intersect. A and E can be merged iff for all 
l I j I n , s u c h t h a t  i#j and O S k I r - 1 ,  

c =< 1030 < 1223 >%,. Recall that C k a ,  I U,, + b h ,  , 

Thus, for C =...e ciOcil--.cir-, > X i  < CjOCj l" '  

cmn > O  and clpl >O, 

Cia, >O, * * * *  Ci-la,, cisi >Os Ci+lai+, >O, 
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a) if ajk > bjk, then b P = bminmax , 
b) if bjk > ajk, then U.  l k  = Uminmax . 

Example 3. Figure 3a below illustrates an A and B that 
satisfy the conditions in Lemma 4. In Figure 3a, 
A =c 0130 c 1300 > X a  and B =e 0120 
e 0022 >+. Their truncated sum C =e 0130 
e 1322 >xz. However, the functions D =e 0310 
e 1300 >x2 and E =c 0120 c 0022 shown in 
Figure 3b, cannot be merged, because they don’t satisfy the 
conditions in Lemma 4. 

a b 
Figure 3. Illustration for Lemma 4. 

Proof: (if) Assume that the conditions hold. Let 
cjk = MAX(ajk,bj6) .  We show that for all assignments 
a of values to vanables that C( a) = A( a) + B( a). There 
are two cases; either C(a) = 0 or C(a) f 0. If C(a) = 0, 
then for at least one j and one k ,  c j k  = 0, and thus 

C(a) = A ( a )  + B ( a )  . Now consider, C(a) f 0. Since A 
and B are at distance 1 either A ( a )  = 0 or B ( a )  = 0. 
Without loss of generality, assume that B ( a )  = 0. We 
must show that C ( a ) = A ( a ) .  We have 

since A ( a )  f 0. I f  aja. 2 bja,, then 
MAX(ajaj,bjaj)=ajqj this hold for i = j .  If 
ajaj c bjaj  then condition b) applies, i.e. ajaj = aminmax, 
however aiai Saminmx e b j a j  (in other words, it will 
never be the minimum) and this implies that 

(only if) Assume that A and B can be merged. That is, 
there exists a product term C such that C=A+B. Assume, 
on the contrary, that the conditions are not satisfied. 
Specifically, assume a) is not satisfied; the argument forb) 
is similar. That is, suppose there is a j and a k such that 
ajk > b j k ,  but that bjk f b m m a X .  Since the product terms 
are normalized, the latter inequality implies that 
bjk c bminmax. Consider an assignment a = (al ,a2,  
.-.,a,,) of values to the variables, such that ai = k and, 
for l#j, al = h ,  where blh = bminmax . Because the product 
term is normalized, all b y  are the same, and B ( a )  = bjk . 
But, A and B do not intersect, and A ( a )  = 0. Thus, if A 
and B can be merged into a single product term C, then 
C(a) = A ( a ) +  B ( a )  = b j k .  It follows that MIN(C~, ,  , 

U j k  ‘ U j k  = o  (Since C p  =MM(ajk ,b jk ) ) .  Thus, 

C ( a )  = MIN(cjaj ) = MIN(MAX(ajaj ,bjaj )) and biai = 0 

MIN(MAX(ajaj *bjaj )I = MIN(ajaj  I - 

cZa, , -*- ,c,~ ) = b j k .  Consider the assignment a’ = (a;, 
C X ; , . . . , ~ : ) ,  such that a; = a j ,  except for j= i ,  in which 
case as = b m m m x .  It follows that C(a’) = A(a’)+ 
B(a’) = bminmax and that c j k  = b j k .  

Consider an assignment p = Cpl ,p2,.-.,p,,) of values 
to the variables, such that pi = k and, for l f j ,  p l  = h ,  
where a,,, = ammx . Because the product term is 
normalized, all a,?” are the same, and A @ )  = ajk. But, 
A and B do not intersect, and B(P) = 0. Thus, if A and B 
can be merged into a single product term C, then 
C @ )  = A@)+ B @ )  = ajk. It follows that MIN(cla l ,  
cZa, ,.-.,c,. ) = ajk. Consider the assignment p’ = @;, 
p;,.-.,p:), such that = pi ,  except for j= i ,  in which 
case p( = Ummsx. It follows that C@’) = A@’)+ 

are contradictory requirements on cjk. It follows that A 
and B cannot be merged. Q.E.D. 
Case 2: Consider two product terms A and B at distance 
0, such that B covers A .  The merged product term C is 
obtained as follows: 

B V ’ )  = ammax and cjk = ajk. But ajk > bjk, and there 

C t B  
for each minterm a included in A 

modify C such that C(a) = A ( a ) +  B ( a )  

Once C has been obtained we have to verify that it is 
indeedequalto A + B .  

for each minterm a included in C 
we must have C(a) = A ( a ) +  B ( a )  

otherwise A and B cannot be merged. 
Example 4. Given A =c 0321 e 0323 >x2 and 
B =c 0010 >x ,  e 0100 >x, we obtain C =e 0331 
e 0323 > x 2  . But C f A + B since C(2,3) f A(2,3) + 
B(2,3).  The left hand side of the inequality evaluates to 
3, whereas the right hand side is equal to 2. 

Finally, we consider product terms at distance 0 that do 
not fall into Case 2.  
Case 3: If A can be expressed as A = A, + A,, such that 
the pair (A l ,B)  falls into Case 1 and (A2,B)  falls into 
Case 2 ,  then A and B can be merged if the following 2 
conditions hold 

1 )  A, and B can be merged (let C, = A2 + B )  
2) A1 and C, can be merged (let C = Cl + A1)  

If the decomposition A = A, + A, exists, then it is unique. 
If such decomposition does not exist, then A and B cannot 
be merged. The following condition must hold for A to be 
expressed as A1 + A,, as described above 

for all O l k e r ,  l s i c j ,  and J e i I n  given 
1 I j I n . Essentially, we split the product term along the 
j* variable. 
Example 5. Consider the product terms A =c 2100 
c 1200 > x 2  c 0112 > x 3  and B =c 3200 

[(Qik = 0) and (bik = o)] Or [ (Qik  f 0) and (bik f o)] , 

e 0133 >*, 



c 0223 >x3. We can express A as a sum of two product 
terms, split along x,, A = A1 + A, =< 1100 

B can be merged with A, (Case 2) as 

Finally, Cl can be merged with A1 (Case 1) as 

We conclude that A and B can be merged. 

3.2 The Consensus Operation 

c lo00 >xz < 01 11 >x3 + c 2100 c 0200 >x2 < 01 12 

A2 + B =< 3200 < 0333 >x2 c 0223 >x3 = C1. 

< 1333 >x, < 0223 >’, = A + B .  C1+ A1 =< 3200 

Informally, the consensus term C of two product terms 
A and B is a largest product term that includes minterms 
from both, such that A + B covers C. The distance be- 
tween A and B must be either l or 0. We consider two 

Case 1: First, we consider product terms A and B at 
distance 1. Unfortunately, two product terms may have 
more than one consensus term-according to the definition 
given above. We illustrate this with the following 
example. 
Example 6. Consider the product terms A =c 3300 
c 3210 >x2 and B =< 0023 c 0123 >x2 (see Figure 4.) 
We have the following seven normalized consensus terms 
of size 8: c 1111 c 0120 >xz,  

< 0210 > x 2 ,  c 2111 c 0210 >.+, and < 2211 >xl 

CaSeS. 

c 0110 > x 2 ,  c 1112 
< 1121 >,, < 0120 >x, , < 1122 

< 0210 >,,. 

c 0120 BX2 , < 121 1 

Figure 4. Function used in Example 6. 

We give the following definition, which uniquely 
defines the consensus term of two product terms at distance 
1. Let xi be the variable for which the corresponding 
literals do not intersect. We define A‘ as follows; 

and 
u , ~ = u ~ ,  f o r 0 l k l r - 1  

for O S k l r - 1 ,  l l j c i ,  a n d i c j l n .  Similarly, we 
define B’. Normalize A’ and B‘. If A’ and B’ are 
mergable, then the consensus C = A’+ B‘. If A‘ and B’ 
are not mergable, then let B” be the following product 
term 

b; = MIN(U&,b;k), for 0 k 5 r - 1 

md 

The consensus term C = A’ + B”. 
We illustrate our definition of consensus with the 

following two examples. 
Example 7. Consider the product terms A =c 3300 >x, 

< 3110 >x2 and B =< 0023 c 0123 >x . We have 
A’ =c 1100 c 0110 >x2 a n d  B3=c 0022 
c 0120 >x2. Since they can be merged, the consensus 
term is C =< 1122 < 0120 >,,. 
Example 8. Consider the product terms A =e 3300 >xl 

3210 >x, and B =c 0023 < 0123 >x shown in 
Figure 4. and 
B’ =c 0022 < 0120 >x2. Since they cannot be merged, 
we find B” =< 001 1 < 01 10 >x2. The consensus term 
is C=<2211>,1<0210~x2. 
Case 2: We now consider product terms A and B at 
distance 0. The consensus term C of A and B includes all 
minterms that are included in A and in B. We define A‘ as 
follows; 

b; =bjk, O I k < t - l ,  l I j < i ,  andic  j l n .  

We have A’ =< 2200 >,, c 6210 

ajk ifbjk # o  
i o .  otherwise’ 

u;k = 

for 0 I k I r - 1, 1 I j I n.  Similarly, we define B’. 
Normalize A’ and B‘. If A’ and B‘ are mergable, then 
the consensus C = A’ + B’. Otherwise, let B’’ be the 
following product term; 

where q is the minimum non-zero value of all bik. The 
consensus C = A’ + B ” .  
Example 9. Consider the product terms A =c 0210 
c1210>,, a n d B=<0133>, <0130>,,. 
A‘ =c 0210 >x, < 0210 >xz a n d Bf =c 0130 
c0130>,,. Since they cannot be merged we find 
B” =c 01 10 >xl c 0110 >x2.  The consensus term is 
C =< 0320 < 0320 >x,. 

Example 10. Consider the product terms A =c 0210 
< 1210 >=, a n d  B =< 0313 >, < 0130 > x 2 .  

A’ =c 0210 >xl 0210 >xz and Bf =< 0310 
< 0130 >xz.  A‘ and B’ can be merged and the consensus 
term is C =< 0320 < 0330 >x2.  

3.3 The Sharp Operation 

b!‘ P = m ( b j k , q ) ,  f o r O l k l r - l a n d l l  j l n ,  

The sharp operation (denoted by #) has been used in 
binary minimization algorithms [HON74]. In binary 
logic, the sharp operation is defined as A# B = f i  , where 
A and B are product terms. Note that f i  may not be 
realizable as a single product term. The sharp operation 
satisfies A = A# B + AB. In an analogous way, we define 
the sharp operation of two product terms A and B at 
distance 0 such that A + B = A# B + C + B# A, where C is 

I7 



the consensus of A and B .  If the distance between A and B 
is greater than zero, then A# B = A. A# B is a sum of 
products expression that may not be unique. We illustrate 
the sharp operation with the following two examples. 
Example 11. Given the product terms A =< 0330 
< 3210 >,, and B =< 0222 < 0020 >,?. A# B = 
<0330>,I<3200>,. In this case, there is a unique 
solution. 
Example 12. Given the product terms A=<0330>, 
< 3213 >X2and B =< 0022 < 0022 >%. Two possible 
solutions of A# B are: 

1) < 0330 < 3200 >xz  + < 0300 < 0013 >,, 
2) < 0300 >,, < 3213 >,, + < 0030 >xl < 3200 >% 

< 0033 >,, 
< 0022 >,, . We verify that the 

The consensus of A and B is C =< 0030 
and B# A =< 0002 
following holds: A + B = A# B + C+ B# A. 

3.4 The Reshape Operation 

The reshape operations of two product terms A and B is 
defined as A# C + C+ B# C, where C is the consensus of 
A and B. Note that when the distance between A and B is 
greater than 1 the reshape of A and B is A + B .  

4 Comparison with Window Literals 

There is a significant increase in the complexity of the 
analysis of sum-of-product expressions when window 
literals are replaced by universal literals. However, there 
also is a significant decrease in the number of product 
terms. In a PLA, the space allotted to literals is large 
enough to accommodate the largest, and we can view the 
cost of a literal as a constant. This statement is true for 
both window and universal literals. We expect a universal 
literal PLA to have a higher cost than a window PLA, 
because of greater complexity. 

In random logic, we can optimize space by 
accommodating different literal costs. According to Lei 
and Vranesic [LEI911 the cost of a universal literal 
(implemented in current mode CMOS) ranges from 1 to 25 
and the MIN gate has a cost of 5. The following example 
illustrates how a function can be expressed with two 
product terms but have different costs. 
Example 13. The function shown in Figure 5 can be 
expressed as a sum of two product terms with universal 
literals. However, there is no unique representation. 
Below are 3 expressions with their corresponding costs. 

expression cost 
1) < 0300 < 3222 >,, + < 0023 >xl < 0013 pX2 40 
2) < 0300 < 3211 >x2 + < 0123 < 0013 >,, 38 
3) < 0300 e 3210 >,, + < 0223 < 0013 >,, 46 

This function requires at least five product terms when 
window literals are used. Using window literals the 
function can be expressed as < 0300 < 3000 >x2 

+ < om < 0222 >,, + < 0011 < 0011 >12 

+<0011>,<0001>,, +<OO01>,I<oo01>,2. AC- 
cording to the cost estimates of Lei and Vranesic LEI911 
the implementation of this expression would cost 101. 

x2 q 0 1 2  3 

Figure 5. A 2 variable function. 

Any minimization procedure must take into account 
that normalized product .terms may not be cost effective. 
For example the product term < 01 11 < 0100 >,, has a 
cost of 20. The equivalent unnormalized product term 
< 0123 < 0100 >xz has a cost of 16. Therefore, a good 
minimizatlon procedure cannot be restricted to consider 
only normalized product terms. 

In this paper, we have shown two operations, merge 
and reshape. Merge produces one product term from two, 
while reshape produces two or more product terms from 
two. Analogous operations have been successfully used in 
a minimization algorithm with window literals PUE92aI. 
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